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1. Introduction

In recent years, it has been possible to investigate aspects of the large N noncommuta-

tive gauge theories in the spirit of the AdS/CFT [1 – 3] correspondence. Noncommutative

gauge theories arise as a certain low-energy limit of string theory in Neveu-Schwarz-Neveu-

Schwarz (NS-NS) B-field background [4]. Supergravity duals of large N noncommutative

gauge theories with maximal supersymmetry have been constructed as the decoupling lim-

its of D-brane solutions with NS-NS B fields [5, 6]. Noncommutative gauge theories are

intriguing dynamical systems which exhibit rich features such as gauge invariance, non-

locality and UV/IR mixing. These supergravity solutions have been used to investigate

qualitative aspects of nonperturbative gauge theories [15 – 20]. Since noncommutativity

introduces a new physical scale to the theories, it modifies the Wilson loop behavior. If

noncommutativity effects are large, then they exhibit area law [13, 22, 14]. Supergravity

duals of noncommutative gauge theories with less than maximal supersymmetry have also

been constructed [7, 32]. The behavior of the Wilson loops in N = 1 NCSYM theory has

been investigated from a deformation of the Maldacena–Nùñez solution, which is proposed

as supergravity duals of N = 1 NCSYM theory. The quark-antiquark potential via the

Wilson loop gives a same behavior as ordinary N = 1 super Yang–Mills theory in the IR

region, although the UV physics give a different behavior. The β-function in the N = 1

NCSYM theory has also been computed and the β-function of the NCSYM theory coincides

with the ordinary one [32].

It is well known that noncommutative gauge theories have no local gauge invariant

operators. Nevertheless there are non-local gauge invariant operators which are the Fourier

transform of local operators attached to open Wilson lines [8, 9]. It seems to indicate that

the supergravity fields act as sources of such kind of gauge invariant operators [10 – 12].

The fact that supergravity fields do not depend on the noncommutative coordinates makes

it easier to obtain the gravity fields that are dual to such kind of gauge theory operators.
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Supergravity solutions have been used to study qualitative aspects of non-perturbative

gauge theories not only quark confinement, but also chiral symmetry breaking, renormal-

ization group flow, binding energy of the baryon and glueball mass spectrum. A discrete

glueball spectrum with a finite gap can be derived by compactification of the dual super-

gravity models. The radius of the compactifying circle provides the ultraviolet cut-off scale

and the glueball masses are measured in unit of the compactification radius. The ratio of

the glueball masses is a fairly good quantitative agreement with lattice data [23 – 26].

In this paper, we study some nonperturbative aspects of noncommutative Yang-Mills

(NCYM) theories by focusing on evaluating mass spectra of the glueballs. Since NCYM

theories have an intrinsic physical scale, there is a possibility that the physical scale reflects

the discrete mass spectra without any compactifications. The paper is organized as fol-

lows. In section 2, we evaluate 0++ glueball masses in noncommutative super Yang-Mills

(NCSYM) theory in four dimensions by solving the wave equations for dilaton in the dual

supergravity background. The mass eigenvalues can be determined approximately via the

Wentzel-Kramers-Brillion (WKB) analysis. 0++ glueball masses in NCSYM theory in a

constant self-dual of gauge field background are also evaluated using the dual supergravity

description. In section 3, we evaluate 1−− glueball masses in NCSYM theory in four dimen-

sions by solving the wave equations for antisymmetric tensor field in the dual supergravity

background. All the results are compared with the glueballs masses in finite temperature

Yang-Mills theories from supergravity computation and lattice computations. Section 4 is

devoted to conclusions and discussions.

2. The 0
++ glueball masses in noncommutative gauge theory

2.1 Glueball masses in NCSYM theory

We begin with the D3 brane solution in a NS-NS B-field background in the near horizon

limit [21, 22]:

ds2 = α′R2

[
u2

{
−dx2

0 + dx2
1 + ĥ (dx2

2 + dx2
3)

}
+

(
du2

u2
+ dΩ2

5

)]
, (2.1)

where

ĥ−1 = 1 + a4u4 . (2.2)

Here we assume that the NS-NS B field has the non-vanishing component of B23. In order

to obtain NCSYM theory we should take the B-field to infinity in the near horizon limit as

Bα′ = fixed. The noncommutativity parameter a is related to the rescaling B-field B̃23

as B̃23 = α′R2

1+a4u4 .

The 0++ glueball masses can be derived from the 2-point function of the dimension 4

scalar operators O4 = trF 2. The scalar operators O4 couples to the real part of a complex

massless scalar field that consists of the dilaton and the Ramond-Ramond (R-R) scalar

field. When we evaluate the 0++ glueball masses, we have to solve the classical equation of

motion of the massless dilaton in the supergravity background [23, 26]. Consider the wave

equation for the dilaton:

∂µ

{
e−2φ√ggµν∂νφ

}
= 0 . (2.3)

– 2 –
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Under the metric of (2.1) the dilaton equation (2.3) is given by:

∂u [u5∂uρ ] + u(k2
0 − k2

1)ρ − (1 + a4u4)u(k2
2 + k2

3)ρ = 0 . (2.4)

In deriving this equation, we assume that the dilaton φ has the plane wave form φ =

eik·xρ(u). The glueball mass M2 is equal to −k2. In order to take in the effects of

the noncommutativity to the wave equation, we choose a particular momentum kµ =

( M√
1−β2

, 0, βM√
1−β2

, 0) that is given by the Lorentz boost of the rest frame momentum kµ =

(M, 0, 0, 0). In other words, we consider the dilaton equation in the “moving” frame with

the velocity β in unit of the light velocity [13, 15, 32]. Then the equation (2.4) becomes

∂u [u5∂uρ ] +
M2

1 − β2
u[1 − β2(1 + a4u4)]ρ = 0 . (2.5)

When we change the variable to y = u2, the equation takes the form

∂y [ y3∂yρ ] +
M2

4(1 − β2)
[1 − β2(1 + a4y2)]ρ = 0 . (2.6)

Since the differential equation (2.6) has singularities at y = 0 and y → ∞, we rewrite

the equation (2.6) by using a new variable a2y = ez. Then we have

∂z [ e2z∂zρ ] +
M2a2

4
ez[1 − γe2z ]ρ = 0 , (2.7)

with γ ≡ β2

1−β2 . For a definition of the new function ρ = e−zψ we can obtain the

Schrödinger-type equation as

ψ′′ + V ψ = 0 , (2.8)

where ′ denotes the differentiation with respect to the variable z. The explicit form of the

potential for the Schrödinger equation (2.8) is given by

V = −1

4
M2a2γe−z(ez − a2λ+)(ez − a2λ−) , (2.9)

where

λ± = − 2

M2a4γ

{
1 ±

√
1 +

M4a4γ

4

}
. (2.10)

This potential has the turning points at z = ln(a2λ−). We shall evaluate the mass spectrum

within the semiclassical WKB approximation. The WKB approximation for this potential

gives

(
n +

1

2

)
π =

∫ lnλ−

−∞

dz
√

V

=

√
1

4
M2a4γ

∫ λ−

0
dy

√
(y − λ+)(λ− − y)

y3
, (2.11)
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where n denotes the integer. By substituting the variable y = λ−t into the last line of

eq. (2.11), we can rewrite the WKB integral as

(
n +

1

2

)
π =

√
1

4
M2a4γ (−λ+)

∫ 1

0
dt t−3/2(1 − t)1/2 ×

×
{

1 − 1

2

λ−

λ+
t −

∞∑

m=2

(2m − 3)!!

2n

(
λ−

λ+
t

)m
}

. (2.12)

In deriving eq. (2.12), we have expanded the expression
√

1 − λ−

λ+
t in the Taylor’s series

by taking account of the fact that 0 < −λ−

λ+
t < 1. The magnitude of the parameter

λ−

λ+
takes values smaller than 0.1 for the noncommutativity parameter a ∼ M−1 and the

velocity β < 0.8. Even though the noncommutativity parameter a takes large value such

as a ∼ 104M−1, the parameter λ−

λ+
takes such a sufficiently small values in the low velocity

β < 0.014. Hereafter we restrict our computation within the low velocity region where the

perturbative analysis is appropriate. The right hand side of the expression (2.12) is given

as the function of the dimensionless quantity (Ma)4. The glueball masses are obtained by

solving the WKB approximation (2.12) with respect to the quantity (Ma)4 after carrying

out the integration. Up to the leading order in the parameter λ−

λ+
we obtain

(Ma)4 =
(2n + 1)2(2n − 1)(2n + 3)

γ
. (2.13)

Here we have utilized a regularization based on the analytic continuation for Euler’s integral

of the first kind:
∫ 1
0 dt t−3/2(1− t)1/2 ≡ limp→− 1

2

B(p, 3
2) = −π, where B(p, q) denotes the

Euler’s beta function. The mass spectrum for 0++ glueball is given by

M0++

(L) =
1

a
4

√
(2n + 1)2(2n − 1)(2n + 3)

γ
, (2.14)

The glueball masses (2.14) takes real numbers for positive integer n = 1, 2, 3, . . . . Notice

that the glueball masses are proportional to the inverse of the noncommutativity parameter

a. When we take the commutative limit a → 0, then the masses do not take the discrete

values.

Up to the subleading order in the parameter λ−

λ+
of the WKB approximation leads the

mass spectrum for 0++ glueball:

M0++

(L+SL) =
1

a
4

√
4

81

f+(n)

γ
, (2.15)

where f±(n) denotes some function of the positive integer n whose explicit form is given by

f±(n) = 512n4 + 1024n3 + 96n2 − 416n + 8 ±
± 8(16n2 + 16n − 11)

√
(2n + 1)2(4n2 + 4n − 2) . (2.16)
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state WKB(up to leading) WKB(up to subleading)

0++ 1 (input) 1 (input)

0++∗ 1.85 1.89

0++∗∗ 2.64 2.73

0++∗∗∗ 3.43 3.56

Table 1: Masses of the 0++ glueball in NCYM4.

state NCY M4 (WKB) QCD4 (WKB) [26] QCD4 (Lattice) [28, 29]

0++ 1 (input) 1 (input) 1 (input)

0++∗ 1.89 1.62 1.75 (±0.17)

0++∗∗ 2.73 2.24 -

0++∗∗∗ 3.56 2.82 -

Table 2: Masses of the 0++ glueball from supergravity and lattice QCD.

The glueball masses M0++

(L+SL) take the positive real eigenvalues, while the other choice

of glueball masses M̃0++

(L+SL) ≡ 1
a

4

√
4
81

f−(n)
γ take complex eigenvalues. The states for 0++

glueball with the masses M̃0++

(L+SL) are unstable. As will be seen later, however, these

unstable states are avoidable by virtue of introducing a constant self-dual gauge field back-

ground.

As was expected that the glueball masses are given in units of the noncommutativity

parameter a. The noncommutativity parameter in the NCYM theory plays a similar role

to a compactification radius in the Yang-Mills theory compactified on a circle, or the

temperature in the Yang-Mills theories at finite temperature, where the temperature is

proportional to the inverse of the compactification radius [23, 26, 27]. We should notice

that the spatial noncommutativity make it possible to obtain discrete mass spectrum in

the Yang-Mills theory without any compactifications.

Although the expression (2.15) is a bit complicated, there is little difference between

the ratios of the 0++ glueball masses up to the leading order and the subleading order. The

ratios of the 0++ glueball masses M0++

(L+SL) obtained by solving the dilaton wave equation

in the WKB approximation are listed in table 1.

The glueball masses also depend on the boost parameter γ, besides the noncommuta-

tivity parameter a. When we evaluate the glueball masses M in the rest flame with the

boost parameter γ = 0, then the glueball can not take the discrete mass spectrum with

a finite gap. This is consistent with the fact that the effects of the noncommutativity are

taken in by the moving frame. The ratio of the masses does not depend not only on the

noncommutativity parameter a, but also on the boost parameter γ, which is a dimension-

less parameter. This fact is not an accident. We can regard the WKB integral (2.12) as an

algebraic equation for the variable M4a4γ. If we can solve the algebraic equation, then we

have the variable M4a4γ as a function of the integer n. therefore, the glueball masses are

also a function of the integer F (n) as M = a−1γ−1/4F (n). Although the masses depend on

the noncommutativity parameter a and the boost parameter γ, the ratios of the masses are

– 5 –
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independent of both parameters. Comparison of 0++ glueball masses in finite temperature

Yang-Mills theory in four dimensions from supergravity, besides of the lattice QCD results

in four dimensions is shown in table 2. From table 2 we find that the difference between

the supergravity or lattice results in the QCD and the supergravity ones in the NCYM

theory is small.

2.2 Glueball masses in NCSYM theory in a constant self-dual background

In this subsection we evaluate the glueball masses in the four dimensional NCSYM theory

in a constant self-dual gauge field background using the dual supergravity description.

Its supergravity dual is known as a limit of superposition of D3-brane and D(-1)-brane

(D-instanton) backgrounds [21, 22]. The metric for the supergravity solution in the near

horizon limit is:

ds2 = α′R2
(

1 +
q

R4u4

)1/2
[
u2

{
−dx2

0 + dx2
1 + ĥ (dx2

2 + dx2
3)

}
+

(
du2

u2
+ dΩ2

5

)]
,

(2.17)

where

ĥ =
1

1 + Ha4u4
,

with H = 1 + q
R4u4 . Here q denotes the D -instanton density.

Under the metric of (2.17) we obtain the wave equation for the dilaton φ = eik·xρ(u)

∂u [u5∂uρ ] +
M2

1 − β2
u[1 − β2(1 + Ha4u4)]ρ = 0 , (2.18)

with a particular momentum kµ = ( M√
1−β2

, 0, βM√
1−β2

, 0). Changing the variable to z =

2 ln(au) we have

∂z [ e2z∂zρ ] +
M2a2

4
ez[1 + γHe2z]ρ = 0 , (2.19)

where γ = β2

1−β2 . For a redefinition of a function ρ = e−zψ we can obtain the Schrödinger-

type equation as

ψ′′ + V ψ = 0 . (2.20)

The potential V takes the form:

V = −1

4
M2a2γe−z(ez − a2κ+)(ez − a2κ−) , (2.21)

where

κ± = − 2

M2a4γ

{
1 ±

√
1 +

M4a4γ

4

(
1 − a4q

R4
γ

)}
. (2.22)

There is also a turning point at z = ln(a2κ−). If the parameter γ satisfies the condition:

0 < γ <
R4

2a4q

{√
1 +

16q

M4R4
− 1

}
, (2.23)

– 6 –
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both of the parameters κ± become real (and positive) numbers. The condition (2.23) shows

that the boost parameter γ is restricted within a certain range when R4

2a4q{
√

1 + 16q
M4R4 −1}

is smaller than 1. The WKB approximation for this potential gives

(
n +

1

2

)
π =

√
1

4
M2a4γ

∫ κ−

0
dy

√
(y − κ+)(κ− − y)

y3
, (2.24)

where n denotes the integer. Here we have rewritten the WKB integral (2.24) by using the

variable y = a−2ez. By substituting the variable y = κ−t into eq. (2.24), we can rewrite

the WKB integral as

(
n +

1

2

)
π =

√
1

4
M2a4γκ+

∫ 1

0
dt t−3/2(1 − t)1/2 ×

×
{

1 − 1

2

κ−

κ+
t −

∞∑

m=2

(2m − 3)!!

2n

(
κ−

κ+
t

)m
}

. (2.25)

In deriving eq. (2.25), we have expanded the expression
√

1 − κ−

κ+
t in the Taylor’s series by

taking account of the fact that 0 < −κ−

κ+
t < 1.

The glueball masses are obtained by solving the eq. (2.25) for M . Up to the leading

order in the parameter κ−

κ+
the 0++ glueball masses are given by

M0++

(L) =
1

a
4

√
(2n + 1)2(2n − 1)(2n + 3)

γ
(
1 − a4γ q

R4

) . (2.26)

When the boost parameter γ satisfied the condition

0 < γ <
R4

a4q
, (2.27)

the mass spectrum (2.26) takes real numbers for positive integer n = 1, 2, 3, . . . The con-

dition (2.27) is stronger than the condition (2.23). The boost parameter γ is restricted by

the instanton density q.

We next evaluate the glueball masses up to the subleading order in the parameter κ−

κ+
.

The mass spectrum is given by

M0++

(L+SL) =
1

a
4

√
2f+(n)

9γ
(
1 − a4γ q

R4

) , (2.28)

with the condition (2.27) and

M̃0++

(L+SL) =
1

a
4

√
2f−(n)

9γ
(
1 − a4γ q

R4

) , (2.29)

with the condition R4

a4q
< γ. Here f±(n) is the same function as (2.16). When we take the

limit q → 0, then the glueball masses (2.29) take the complex values and the states for

0++ glueball with the masses (2.29) becomes unstable. By virtue of the instanton effects,

– 7 –
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state M (up to subleading) M̃ (up to subleading)

0++ 1 (input) 1 (input)

0++∗ 1.89 0.75

0++∗∗ 2.73 0.63

0++∗∗∗ 3.56 0.56

Table 3: Masses of the 0++ glueball in NCYM in a constant self dual background.

the states for 0++ glueball with the masses (2.29) becomes stable. Although the instanton

effects changes the 0++ glueball masses, they do not affect the ratio of the 0++ glueball

masses. The ratios of the 0++ glueball masses M0++

(L+SL) and M̃0++

(L+SL) in NCYM theory

in a constant self-dual background are listed in table 3. The ratios of the glueball masses

M̃0++

(L+SL) is different from that of the glueball masses M0++

(L+SL).

3. The 1
−− glueball masses in noncommutative gauge theory

We next evaluate the 1−− glueball masses in NCSYM theory in four dimensions using the

dual supergravity description. The 1−+ and 1−− glueball masses can be derived from the

2-point function of the dimension 6 two-form operators O6 = dabcFµρ
aF ρσbFσν

c, where dabc

is the symmetric structure constant. The two-form operator O6 couples to the real part of

a complex-valued antisymmetric tensor field Aµν field which consists of the NS-NS and R-R

two-forms fields. The operator contains 1−+ and 1−− components, which correspond to

the fields A0i and Aij, where i, j = 1, 2, 3 correspond to the three coordinates of R
3. When

we evaluate the 1−+ and 1−− glueball masses, we have to solve the classical equation of

motion of the massless antisymmetric tensor field Aµν in the supergravity background [23].

Consider the wave equation for the complex-valued antisymmetric tensor field Aµν :

∂µ

{√
g∂[κAρσ ]g

µκgρνgσλ
}

= 0 , (3.1)

where the square brackets [ ] denotes antisymmetrization with the indices. Assuming the

simplest ansatz we take only one component of the fluctuation. Under this assumption, the

1−+ or 1−− glueball mass spectrum depends on the components of the fluctuation, since

the metric (2.1) is anisotropic in R
3 due to the B-field background. First of all, we assume

the only one component of the fluctuation A13 to be different from zero. The component

A13 corresponds to the 1−− glueball.

We assume that the antisymmetric tensor field A13 is of the form A13 = ψ(u)eik·x.

Using the metric (2.1) one obtain the differential equation for A13:

∂u [u∂uψ(u) ] +

{
M2

1 − β2

1

u3

(
1 − β2(1 + a4u4)

)}
ψ(u) = 0 , (3.2)

In deriving the wave equation (3.2), we have chosen a particular momentum kµ = ( M√
1−β2

,

0, βM√
1−β2

, 0). Changing the variables to z = 2 ln(au), we have the Schrödinger type equa-

tion as

ψ′′ + V 1−−

13 ψ = 0 . (3.3)

– 8 –
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Here V 1−−

13 denotes the potential

V 1−−

13 = −1

4
M2a2γ e−z(ez − a2η+)(ez − a2η−) , (3.4)

where

η± ≡ ± 1

a2√γ
, (3.5)

with γ ≡ β2

1−β2 . The WKB approximation for this potential can be rewritten by using the

variable y = a−2ez:

(
n +

1

2

)
π =

1

2
Ma2√γ

∫ η+

0
dy

√
(η+ − y)(y − η−)

y
, (3.6)

where n denotes the integer. Carrying out of this integration, we obtain the mass spectrum

for 1−− glueball:

M1−−

13 =
1

16a
Γ(1/4)2 4

√
(2n + 1)4

π2γ
. (3.7)

As expected, the glueball masses are proportional to the inverse of the noncommutativity

parameter.

In the next place, we assume the only one component of the fluctuation A03 to be

different from zero. The component A03 corresponds to the 1−+ glueball.

The wave equation for A03 is given by

∂u [u∂uψ(u) ] −
{

M2β2

1 − β2

1 + a4u4

u3

}
ψ(u) = 0 . (3.8)

In deriving the wave equation (3.8), we have set the dependencies A03 = ψ(u)eik·x and

chosen a particular momentum kµ = ( M√
1−β2

, 0, βM√
1−β2

, 0). Under the change of variables

to z = 2 ln(au), one obtains the Schrödinger form of the equation:

ψ′′ + V 1−+

03 ψ = 0 . (3.9)

Here V 1−+

03 denotes the potential

V 1−+

03 = −1

4
M2a2γe−z(1 + e2z) , (3.10)

where γ ≡ β2

1−β2 . Since the potential V 1−+

03 takes negative value for all region of z, there is

no turning point. Hence the WKB approximation for this potential V 1−+

03 cannot lead the

discrete mass spectrum for 1−+ glueball.

The remaining components which we should investigate are A01 and A23. The compo-

nents A01 and A23 correspond to the 1−+ and 1−− glueball, respectively. We assume that

the antisymmetric tensor field Aµν are of the form Aµν = f(u)eik·x and choose a particular

momentum kµ = ( M√
1−β2

, 0, βM√
1−β2

, 0). For a suitable redefinition of the function f(u)

and the change of variable, we obtain the Schrödinger type equations for A01 and A23.

– 9 –
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state NCY M4 (WKB) QCD4 (WKB) [30]

1−− 1 (input) 1 (input)

1−−∗ 1.67 1.75

1−−∗∗ 2.33 -

1−−∗∗∗ 3.00 -

Table 4: Masses of the 1−− glueball in NCYM4.

The corresponding potentials with the Schrödinger equations for A01 and A23 are given as

follows,

V 1−+

01 = −1

4
M2a2γ e−z(1 + e2z) − e2z

1 + e2z

(
2 − 3e2z

1 + e2z

)
, (3.11)

V 1−−

23 =
1

4
M2a2(1 + γ) e−z − 2e2z

1 + e2z
+

e4z

(1 + e2z)2
, (3.12)

respectively. These potentials have two turning points for a certain region in γ. Hence the

WKB approximation for the potentials V 1−+

01 and V 1−−

23 implies the discrete mass spectrum

for 1−+ and 1−− glueball. For evaluation of these mass spectra, numerical approach is

more useful than the WKB approximation. More detailed analysis will be shown in [31].

The ratios of the 1−− glueball masses obtained by solving the wave equation for anti-

symmetric tensor field in the WKB approximation are listed in table 4. The supergravity

results in finite temperature Yang-Mills theory in four dimensions are also listed in the

same table.

From table 4, we find that the difference between the supergravity results in the QCD

and the supergravity ones in the NCYM theory is not so large.

4. Conclusions and discussions

In this paper, we have evaluated the ratios of the glueball masses in large N NCSYM

theories via the dual supergravity description. The mass spectrum of the scalar glueball

0++ and vector glueballs 1−− in noncommutative gauge theories are evaluated by solving

the wave equations in the dual supergravity background.

In evaluating the mass eigenvalues, we have applied the WKB analysis to the super-

gravity wave equations. The WKB analysis exhibits that the mass spectrum for the glueball

is discrete with a finite gap due to the space-space noncommutativity. The glueball masses

in noncommutative gauge theories depend on the noncommutativity parameter a with di-

mension of length. The ratio of the glueball masses, however, does not depend on the non-

commutativity parameter. These ratios are not so different from the non-supersymmetric

model of QCD data. The supergravity dual of the noncommutative super Yang-Mills theory

in a constant self-dual gauge field background is constructed by a certain limit of super-

position of D3-brane and D(−1)-brane backgrounds. The effects of the constant self-dual

gauge field background in noncommutative gauge theory can be estimated using the dual

supergravity description. The constant self-dual gauge field background makes unstable

glueball in noncommutative gauge theory stable with large D-instanton density q.

– 10 –
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The noncommutative gauge theories is not conformal due to the noncommutativity of

space [17] and the space-space noncommutativity is reflected in some physical quantities

in the noncommutative gauge theories. For instance, the Wilson loops in noncommutative

gauge theory exhibit area law behavior for the noncommutativity effects are large. The

string tension, which can be read off from the area law, is controlled by the noncommuta-

tivity parameter. Similarly, the discrete mass spectra of the glueball in noncommutative

gauge theory are caused by the space-space noncommutativity. The glueball masses are

also controlled by the noncommutativity parameter.

The glueball mass spectrum for ordinary N = 1 super Yang-Mills theory within the

Maldacena–Nùñez solution has been investigated and it has been shown that a discrete

spectrum and a mass gap for glueball can be produced without any sort of cut-off [33]. It

would be interesting subject to investigate the glueball masses in the noncommutative gauge

theories with less than maximal supersymmetry from the noncommutative deformation of

the Maldacena–Nùñez solution. We hope to discuss this subject in the future.

Acknowledgments

We would like to thank A. Sugamoto for careful reading of the manuscript and useful

comments. One of the authors (T.N.) was partially supported by a Grant-in-Aid for En-

couragement of Scientists (16914013) from the Japan Society for the Promotion of Science

(JSPS).

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[4] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142].

[5] A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT

correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166].

[6] J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09

(1999) 025 [hep-th/9908134].

[7] J. Brugues, J. Gomis, T. Mateos and T. Ramirez, Supergravity duals of noncommutative

wrapped D6 branes and supersymmetry without supersymmetry, JHEP 10 (2002) 016

[hep-th/0207091].

[8] H. Liu, ?-Trek II. ?N operations, open Wilson lines and the Seiberg-Witten map, Nucl. Phys.

B 614 (2001) 305 [hep-th/0011125].

[9] T. Mehen and M.B. Wise, Generalized ?-products, Wilson lines and the solution of the

Seiberg-Witten equations, JHEP 12 (2000) 008 [hep-th/0010204].

– 11 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://xxx.lanl.gov/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://xxx.lanl.gov/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://xxx.lanl.gov/abs/hep-th/9802150
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://xxx.lanl.gov/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB465%2C142
http://xxx.lanl.gov/abs/hep-th/9907166
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://xxx.lanl.gov/abs/hep-th/9908134
http://jhep.sissa.it/stdsearch?paper=10%282002%29016
http://xxx.lanl.gov/abs/hep-th/0207091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB614%2C305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB614%2C305
http://xxx.lanl.gov/abs/hep-th/0011125
http://jhep.sissa.it/stdsearch?paper=12%282000%29008
http://xxx.lanl.gov/abs/hep-th/0010204


J
H
E
P
0
1
(
2
0
0
6
)
0
1
6

[10] H. Liu and J. Michelson, Supergravity couplings of noncommutative D-branes, Nucl. Phys. B

615 (2001) 169 [hep-th/0101016].

[11] Y. Okawa and H. Ooguri, How noncommutative gauge theories couple to gravity, Nucl. Phys.

B 599 (2001) 55 [hep-th/0012218].

[12] S.R. Das, Bulk couplings to noncommutative branes, hep-th/0105166.

[13] A. Dhar and Y. Kitazawa, Wilson loops in strongly coupled noncommutative gauge theories,

Phys. Rev. D 63 (2001) 125005 [hep-th/0010256].

[14] H. Takahashi, T. Nakajima and K. Suzuki, D1/D5 system and Wilson loops in

(non-)commutative gauge theories, Phys. Lett. B 546 (2002) 273 [hep-th/0206081].

[15] M. Alishahiha, Y. Oz and M.M. Sheikh-Jabbari, Supergravity and large-N noncommutative

field theories, JHEP 11 (1999) 007 [hep-th/9909215].

[16] D.J. Gross, A. Hashimoto and N. Itzhaki, Observables of non-commutative gauge theories,

Adv. Theor. Math. Phys. 4 (2000) 893 [hep-th/0008075].

[17] R.G. Cai and N. Ohta, On the thermodynamics of large-N non-commutative super

Yang-Mills theory, Phys. Rev. D 61 (2000) 124012 [hep-th/9910092].

[18] R.-G. Cai and N. Ohta, Noncommutative and ordinary super Yang-Mills on (D(p-2),Dp)

bound states, JHEP 03 (2000) 009 [hep-th/0001213].

[19] R.-G. Cai and N. Ohta, (F1, D1, D3) bound state, its scaling limits and SL(2, Z) duality,

Prog. Theor. Phys. 104 (2000) 1073 [hep-th/0007106].

[20] D.S. Berman et al., Holographic noncommutativity, JHEP 05 (2001) 002 [hep-th/0011282].

[21] H. Liu and A.A. Tseytlin, D3-brane D-instanton configuration and N = 4 super YM theory

in constant self-dual background, Nucl. Phys. B 553 (1999) 231 [hep-th/9903091].

[22] S. Lee and S.J. Sin, Wilson loop and dimensional reduction in noncommutative gauge

theories, Phys. Rev. D 64 (2001) 086002 [hep-th/0104232].
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